Some general features of matrix product states in stochastic systems
نویسندگان
چکیده
منابع مشابه
Some General Features of Matrix Product States in Stochastic Systems
We will prove certain general relations in Matrix Product Ansatz for one dimensional stochastic systems, which are true in both random and sequential updates. We will derive general MPA expressions for the currents and current correlators and find the conditions in the MPA formalism, under which the correlators are site-independent or completely vanishing. We will also introduce an associative ...
متن کاملStochastic matrix product states.
The concept of stochastic matrix product states is introduced and a natural form for the states is derived. This allows us to define the analogue of Schmidt coefficients for steady states of nonequilibrium stochastic processes. We discuss a new measure for correlations which is analogous to entanglement entropy, the entropy cost S(C), and show that this measure quantifies the bond dimension nee...
متن کاملDynamical simulations of classical stochastic systems using matrix product states.
We adapt the time-evolving block decimation (TEBD) algorithm, originally devised to simulate the dynamics of one-dimensional quantum systems, to simulate the time evolution of nonequilibrium stochastic systems. We describe this method in detail; a system's probability distribution is represented by a matrix product state (MPS) of finite dimension and then its time evolution is efficiently simul...
متن کاملS matrix from matrix product states.
We use the matrix product state formalism to construct stationary scattering states of elementary excitations in generic one-dimensional quantum lattice systems. Our method is applied to the spin-1 Heisenberg antiferromagnet, for which we calculate the full magnon-magnon S matrix for arbitrary momenta and spin, the two-particle contribution to the spectral function, and higher order corrections...
متن کاملMatrix product states represent ground states faithfully
We quantify how well matrix product states approximate exact ground states of one-dimensional quantum spin systems as a function of the number of spins and the entropy of blocks of spins. We also investigate the convex set of local reduced density operators of translational invariant systems. The results give a theoretical justification for the high accuracy of renormalization group algorithms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2000
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/33/4/305